ON OPTIMIZING COMPUTATIONS FOR TRANSITION MATRICES

R. E. McFarland and A. B. Rochkind

Reprinted from IEEE Transactions on Automatic Control, Vol. AC-23, No. 3, June 1978
0018-9286/78/0600-0495300.75 © 1978 IEEE



TECHNICAL NOTES AND CORRESPONDENCE 495

On Optimizing Computations for Transition Matrices

R. E. McCFARLAND anp A. B. ROCHKIND

Abstract—For the special case where the coefficient matrix is in stan-
dard companion form, all of the elements of the transition matrix may be
obtained recursively from a single row of elements. The number of
computational steps necessary to generate this required row is an order of
magnitude less than that required for general coefficient matrices. Also the
forced-response coefficients are shown to require negligible additional
calculations for the common problem with a single input and a zero-order
data hold. These computational savings enable the typical, modest-sized
digital computer to address the previously formidable problem of non-
stationary, high-order transfer functions in real time.

INTRODUCTION

Consider the single-input stationary system of order n defined by

X ()=AX (D) +fu() (H

where X (1)=[x,(1), -+, x,()], A is an n® matrix, f is an n vector, and
u(?) is a scalar input function. This system, which is often encountered in
contro! theory applications, may be solved by algorithms which have
recently been devised [1] requiring 0(»*) multiplicative operations. How-
ever, considerable simplification and reduction in computational effort
results if the system is known to be in phase canonical form

X()=AX()+ U() 2
where
0 1 0 0
0 0 1 0
A=r : @)
0 0 0o - 1
4 Taé& T4 o —a,
and
U()=[0,0, - .u(r)]" (4)

Systems given by (1) not in canonical form can be transformed into
that form if they are controllable [2]. This transformation. of course,
requires the solution to the characteristic equation of 4 [3], which
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therefore requires 0(#%) multiplications [4]. However, the system will be
naturally in canonical form if it anises from either the conversion of an
equation of order n to a system of first-order equations or if it represents
a transfer function in state-space form.

The transfer-function application is of special importance for real-time
simulation in the case of nonstationary systems. In this problem, it is
assumed that the digital technology exists to implement transition inter-
vals which are small enough so that coefficient derivatives may be
ignored in the treatment of the discrete solution to (2) as a recursive
boundary value problem {5], {6].

The discrete solution of (2) requires the computation of the state
transition matrix. Applications of the Cayley-Hamilton theorem [7}-{10]
have indicated the path to considerable reductions in the number of
operations required to produce the transient response (u(r)=0). This
note extends these results to the computation of the forced response with
negligible additional operations. providing some data-hold assumption is
made on the input function duning the transition interval. For brevity
only the zero-order hold is discussed here. It will be shown that for
systems in canonical form the computation of the entire forced response
requires only ((#?) multiplications.

A coefficient sizing parameter is developed for the estimation of the
number of necessary terms for series convergence.

Discussion

For a single interval of transition h, assuming a zero-order hold, the
discrete solution to (2) may be written as [11].

X(h) =T X (0)+ T, U(0) (5)
where
W4’
=hm -t . 6
T,=h ;E)o G (6)

The T,, are called generalized transition matrices, and Ty is the state
transition matrix. Note by (4) that only the last column of T, is required
in (5). For any m (6) may be expressed as a recurrence relationship

hm—]

Tm_;=ATm+I'(—m-_——l')-!— (7
where / is the identity matrix. From (3) and (7)
km—lai‘/ {(I<i<n)
Tm—l(l!j)=rm(‘+1'f)+(—m':—r)_! {(1<j<") (8)
where 8, ; is the Kronecker delta. Specializing (8) to j=n
T, (im=T,_(i—lLn). {(2<i<an). 9)

Thus, if the state transition matrix Ty has already been computed, the
last column of T is known {m=1) except for T(1,n). This element is
obtained as follows. From (8)

T, (L.1)= —]'—a,Tm(l.n) (10)

AT
(m—1)
and

T (1)= T (1j= D =g T, (1.n).

@2<j<n). (D

In order to avoid the division operation by zero coefficients, the
quantity p is defined

0, ifa,=0
p=ik, fa=ay=-- =ag,=0  a,,=0 {12)
n, ifay=---=aq,=0.

"

If p=n (integration of order n), (10) and (11) yield
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T,(l.n)=%!— (13)
And, if p# n, then from (10) and (11)
T 1 [ A

()=~ — F—ro(l.pﬂ) ) (14)
!, !

Thus, if the state transition matrix T, has been computed, (9), (13),
and (14) show that the forcing coefficients are determined.

To compute the state transition matrix itself, note that its elements
satisfy the recursive relations [12]

(2<ign)

To(i, )= —a,Ty(i—~1,n)
{(l<j<n)' (1%

Tolij+1)=To(i~ 1)~ a,, To(i~ Lin)

Therefore, only the first row of the transition matrix need be obtained
from other considerations.

From the Cayley-Hamilton theorem. using the techniques of [7}-{10},
we can prove that

ap+] Akzsn

) a
To(l,j+1)=%+hf s 717* (O<j<n) (16)
N kaen :
where
& =8 0<k<n)
age=—ayha, _,,_ .
0.k ! Lkt B (k> n). a7
aj,k=aj—l,k~l_aj+lh Yo, 4y
This gives the first row of the state transition matrix.
Combining (14) and (16)
N @k
7,(lon)= — - [h/’ > 717] (18)

Equations (9) and (18) express an important fact: Once the state
transition matrix is computed, only one extra dicision is required to obtain
the forcing coefficients.

PROCEDURE

The recommended procedure for the computation of all required
coefficients for a single-input zero-order data hold is given below. This
algorithm has been implemented as a Fortran subroutine called ract’
(acronym for Fundamental Algorithm for Computation of Transition)
and verified on a variety of digital computers. Only the technique of
terminating the series computation based upon the computer’s least
significant bit (utmost relative accuracy) appears to be correlated with
computer hardware. For the trivial case of n=1, the state transition
matrix is evaluated by exponentials.

1) Obtain p from relationship (12).
2y For j=0,---,n~1, do:

a) if j<p, set ¢, =0

b) otherwise, calculate

=)
-

O I

et
k.on

|

@

until satisfied;

'Our Fortran version of FAcY requires S0 memory cells and services any number of
transfer functions
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c) Calculate T(l,j+ l)=(i:f/j!)+<p}f,
3) Fori=1,--,n~1, do:
a) calculate To(i+ 1, 1)= —a,T{i,n);
b) Forj=1,---,n—1, do:
i) calculate Ty(i+1,j+ )= Ty(i, /) — a;, To(i,n).
4) For the transient response only, terminate the algorithm. Only the
state transition matrix is produced.
5) Fori=1,--,n—1, do:
a) Set H(i+1)=Ty(i,n).
6) If p=n, calculate H(1)=(h"/n') and terminate algorithm.
7) Otherwise, set H ()= —(¢,/a,.1)-
As shown in (9) and (18), the H vector produced by the algorithm is
the last column of T required to solve for the state.

COMPUTATIONAL EFFORT
Providing that tabular reference is made to inverse factorials, the

stated algorithm requires X multiplicative operations

X=n+2N(n-p)+3n+1 (19)

where 7 is the order of the system, p is defined in relationship (12), and
N is the number of required terms for convergence of all the series (16).

SERIES PROPERTIES

An estimate of the number N of necessary terms for the convergence
of the series as given by (16) depends on the a; , as given by relation-
ships (17). It can be proven by a tedious induction that

Q== > I PR L MY (20
OKisy
Furthermore, for an arbitrary constant a0
et =[=AT TR (0 w0n ) @n
where
a, =i
wm Zerdo (22)
a
and the coefficient size A is defined
A=ah. 23

The L, are the generalized Lucas polynomials [13]. By defining the
constant a properly, various estimates of N can be derived from bounds
on these polynomials. Particularly convenient bounds on the @, can be
derived if the w; are bounded by

O<wl<l,  (I<j<n). 249)
This inequality will be satisfied for all coefficients if a is defined?
a= Maximum[]a/-['/"*'"f]. (25)

1< j<n

By (21)-(23), N will depend on n, the parameter A (which measures the
size of the coefficients), and the W {which measure the relative distribu-
tion of coefficients for fixed A). It will be shown statistically that for
most practical systems, with a given by (25). the effect of the distribution
of coefficients on convergence is secondary.

In order to determine the influence of X upon convergence, Monte
Carlo methods were used. A range of 0 <A< Ay, was selected for the

N is zero if @ vanishes.
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Fig. 1. Distribution for fifth-order systems.

statistical sample. The range of A is related to the sum of the system pole
radii defined by

Psum™= Z {pi (26)

1<i<n

where the p; are the system poles. It can be proven that for any system
the coefficient size A satisfies

A< Ay = A @
For each A, > 0 the system
Amax navi-k
"*"(kfl)[ h ] @9
which has all poles real and equal to A, /(nh) satisfies
A=A, (29)

Thus any class of systems with maximum pole radii sum p,,, has a
maximum A=X,.. as given by (27). The converse is not true: if 0<AK
Amax then it does not follow that the pole radii sum is bounded by the
corresponding p_....

The dependence of Ay, on pole size can be given the following
geometric interpretation. Define the average pole radius

pav E.Psum/" (30)

then by (27)
Amax = nhpav’ (3 l)

Thus for systems of average pole radius bounded by some fixed value
and for fixed A, the larger the system order the larger the possible range
of A. The range 0< A <A, =10 was selected as a reasonable range of A
in terms of pole size. For example, for n=35, if the average pole radius is
bounded by 20 (p,,,=100), then O0< A< 10 for the system and it is
included within the range considered in the analysis below. Note that the
largest pole may be much greater than 20; only the average of the pole
radii need be bounded by 20. Furthermore, the chosen range may even
include some systems for which the average pole size is greater than 20.
Although no general statement can be made for these latter systems,
there exist those with arbitrarily large poles for which A lies within the
stated range.

A total of 20 000 sets of random coefficients was obtained for each n
divided among A intervals of 0.5. The fifth-order system, which is
presented here in detail, was determined to be representative. For a
given A, the required number of terms N is a statistical variable. In Fig. |
the average (dotted line) and plus or minus one standard deviation
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(dashed lines) are presented. N is seen to statistically vary but a small
percentage from its mean value. Thus A is the primary parameter for
determining convergence. In Fig. 1 there appears an alternately dotted
and dashed line; this will be seen to represent the worst possible
distribution of coefficients. Also shown in Fig. 1, the solid line will be
seen to represent typical systems of a wide class.

Specialization to a class of systems permits various analytical esti-
mates of N. One such class contains those coefficients which satisfy the
inequality

{(1<k<n) (32)

lag] < lax 4 illaal,

For example, it can be proven in general that if all poles lie in a 60°
sector about the negative (or positive) real axis, this inequality holds for
the coefficients. Thus inequality (32) defines a large class of coefficients,
For this class a =|a,|, permitting a simple evaluation of a.

An absolute worst convergence case for all coefficients is contained
within this class. It can be deduced from (21) as follows. Select p>0
arbitrarily and define

a=(=1)"p" 1, (33)
Then a=p. It can then be proven that for each k, &, >0 and assumes a
maximum value at w; corresponding to g; of (33) for all w; satisfying (24},
which includes all coefficients a,. In view of (16}, (20), and (21), it can be
expected that the distribution (33) will give the slowest convergence of
the series.

A survey of all the statistical data used to generate Fig. 1 shows that
the system (33) indeed bounds the data.

Within the class of systems satisfying inequality (32) a nominal con-
vergence case can be extracted. Such a representative system is defined

a=ar*i"k  ({i<k<n). 34
The number of terms for convergence of this system versus A is given in
Fig. 1 as a solid line. It lies between the best and worst statistical cases
obtained; similar results were obtained for other values of n. The
conclusion to be drawn from Fig. 1 is that the convergence properties of
the system given by (34) are representative of most systems of practical
interest.

Using the system (34) as a practical convergence case, plots of N
versus A are presented in Fig. 2. It is seen that the larger the order of the
system the faster the convergence. Since the system (34) is considered
typical of most systems, Fig. 2 gives a convenient means to evaluate the
number of terms N for convergence used in (19) in order to determine
the efficiency of the rFacT algorithm. For a class of systems, the faster
convergence for larger n at fixed A can be interpreted geometrically in
terms of the poles. For stable systems satisfying inequality (32) we have

A=ah=h 2 [Re(p)l.

i<i<n

(35)

Thus smaller poles tend to accelerate convergence.
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By formulating the convergence criterion in terms of A, we have
identified the dependence of convergence on the transition interval used
and on the size of the system poles. The latter follows since the
parameter @ used in the definition of A in (23) serves as a measure of the
size of the poles of the system. We have seen from (31) that a given A
and hence a given a places a lower bound on the average pole radius.
For larger a we must have larger poles. Furthermore, for the system (34)
it can be verified that the poles coincide with g times the complex roots
of unity excluding the root at s=1. Thus for this important system a is
the pole radius to the origin. Finally, for more general systems satisfying
(32), by (34) a measures the average real part of the poles. For stable
systems as the poles move away from the origin, a increases and the
convergence is slower (for fixed #). However, in practice, a limit is
placed on the size of A in order to observe the system frequency content
with the transition interval 4 used. For large values of a, which implies
large poles, the parameter A must be reduced. Thus the definition of a
practical value for A produces a reasonable value for the number of
terms required for convergence of the series.

ACCURACY

The accuracy of the raCT algorithm has been established by compari-
sons with elements obtained from double-precision matrix series summa-
tions. Evaluations were made with statistical samples of 2000 points for
each system order n=2, 5, and 10 for 0 < A < 10 divided among intervals
of 0.5. The measure of absolute error utilized was the norm of the
difference between transition matrices and forcing function vectors
obtained by these two techniques.

The average relative error was typically less than one-hundredth of
one percent, with a maximum error of one tenth of one percent.

CONCLUSIONS

We find that the position of the coefficients plays the dominant role in
the series convergence properties. Thus a large a, will slow convergence
far more than a large a,. The critical parameter is A; the distribution of
the coefficients has a secondary effect on convergence. Also, the larger
the order of the system, the more rapid the convergence. This aids
somewhat in counteracting the necessary n*> multiplications.

The Fact algorithm produces a dramatic reduction in the computa-
tional requirements, providing only that the coefficient matrix be in
standard companion form. Only one extra division is required over the
computational effort needed for the state transition matrix in order to
compute the forcing-function coefficients.

This analysis assumed a zero-order hold on the input. The results
obtained here can be easily extended for the higher order hold cases.
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